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Abstract—Sequential decision-making (SDM) is a common type
of decision-making problem with sequential and multistage char-
acteristics. Among them, the learning and updating of policy are
the main challenges in solving SDM problems. Unlike previous
machine autonomy driven by artificial intelligence alone, we im-
prove the control performance of SDM tasks by combining hu-
man intelligence and machine intelligence. Specifically, this article
presents a paradigm of a human–machine traded control systems
based on reinforcement learning methods to optimize the solution
process of sequential decision problems. By designing the idea
of autonomous boundary and credibility assessment, we enable
humans and machines at the decision-making level of the systems
to collaborate more effectively. And the arbitration in the human–
machine traded control systems introduces the Bayesian neural net-
work and the dropout mechanism to consider the uncertainty and
security constraints. Finally, experiments involving machine traded
control, human traded control were implemented. The preliminary
experimental results of this article show that our traded control
method improves decision-making performance and verifies the
effectiveness for SDM problems.

Impact Statement—The human–machine SDM problem refers
to the SDM problem in which humans and machines participate
together. They alleviate the burden on human decision-makers and
also allow humans to have more final decision-making authority
than fully autonomous machine control. At present, there are very
few methods to study the problem of human–machine SDM, and the
human–machine collaboration involved in this field lacks powerful
exploration. The traded control method of the human–machine
systems proposed by us provides a solution to the human–machine
SDM. It can provide help for the field of human–machine co-
driving, human–machine minimally invasive surgery, and other
more decision-making problems involving humans and machines.
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learning, sequential decision-making (SDM), traded control.
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I. INTRODUCTION

S EQUENTIAL decision-making (SDM) problems marked
by sequentiality and multistage are a kind of important

decision-making problems that widely exist in various fields
such as society, economy, military, and industrial production.
Because the decision space of this kind of decision-making
problem increases exponentially with the decision step length,
it is often difficult to obtain the optimal decision sequence.
It is worth mentioning that the rapid development of artificial
intelligence (AI) [1]–[4] in recent years has also continuously
promoted the development of SDM. SDM has as a consequence
the intertemporal choice problem, where earlier decisions influ-
ence the later available choices. In some practical projects, after
making a decision, some new situations arise, and new decisions
need to be made. For example, robot motion planning [5],
[6], assisted driving systems [7], [8], and minimally invasive
surgery [9]–[11] can all be modeled as different SDM problems.
Therefore, the study of the sequential decision itself is helpful
to promote the development of related engineering fields.

The main challenge in solving the SDM problem is that
policy updates cannot keep up with changes in the dynamic
environment. On the one hand, for fully autonomous machines
driven by AI, their uncertainty, credibility, and vulnerability to
attacks cannot be ignored. When faced with a dynamic, uncer-
tain, and changing environment, the consequences of not making
timely decisions are serious, even related to life. For example,
self-driving cars in an open environment are difficult to use with
peace of mind due to the unknown and uncertain environment.
After all, once there is a slight difference in perception or
decision-making, the risk will be fatal and unrecoverable. On
the other hand, although individual human operators can meet
certain intentions and cognitive needs, their low-precision opera-
tions, and labor costs make them unable to be in an advantageous
position in most industrialization and informatization processes.
For example, humans cannot perform minor operations on their
own, and enter dangerous environments to perform operations
(various search and rescue operations), etc.

In response to the above-mentioned challenges, there have
been many related studies at this stage to improve it to varying
degrees based on various methods. Alagoz [10] constructed and
explained the markov decision processes (MDP) model, a pow-
erful analysis tool for SDM under uncertainty, and introduced its
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application in the field of medical decision-making (MDM). To
analyze the complexity of verifying the correctness of deep neu-
ral network (DNN) and a lack of safety guarantees, Michelmore
et al. [12] extracted a quantitative measure of uncertainty based
on Gal’s conclusions [13] that dropout neural network could
approximate Bayesian neural network (BNN), and they evalu-
ated its quality in the end-to-end controller of the self-driving
car. In addition, the method of solving SDM problems based
on deep reinforcement learning has been developed rapidly in
the past five years. The most representative deep reinforcement
learning algorithms are the deep Q network (DQN) proposed
by Mnih [14], as well as the subsequent deep deterministic pol-
icy gradient (DDPG) [15], asynchronous advantage actor-critic
(A3C) [16], and rainbow [17]. For machine learning algorithms,
including the DNN and DRL mentioned above, since there is no
clear training direction in the process of exploring the optimal
policy, a large number of training times are required to achieve
the effect that the user wants, and the generalization ability of
the policy is weak for data beyond the training set.

Different from the above methods, this article considers the
mechanism of human-on-the-loop (HOTL) (its key word in-
volves “traded control”) to accelerate the policy learning process
and then improve the systems’ control performance. The rapid
development of machine intelligence is certainly beneficial to
real-life engineering, but the machine intelligence that has de-
veloped so far cannot completely replace human intelligence.
Therefore, considering the integration of machine intelligence
and human intelligence is a new idea to solve the challenges de-
scribed in this article. Unlike classical machines that implement
SDM completely autonomously [14], [18]–[20], this article con-
siders that human–machine traded control systems implement
SDM, wherein the several partners need to cooperate to complete
the task. Importantly, we emphasize the determination and use
of the autonomous boundary, which has not been mentioned
in previous traded control [21]–[23], and we will describe it
in detail in Section III. Human–machine traded control in this
article includes two situations: the scene where the machine
traded with the human (we call it machine traded control for
short); and the scene where the human traded with the machine
(we call it human traded control for short). We briefly list the
contribution points as follows.

1) We put forward the concept of autonomous boundary, and
gave its definition and judgment method. The existence
of the autonomous boundary make the decision-making
authority of human and machine in the traded control
systems have a preliminary clear division.

2) Based on the judgment of the autonomous boundary, we
optimize the design of the human–machine traded control
systems, which is conducive to improving the overall
decision-making performance of the system.

3) We divide the scene of human–machine traded control
systems into machine traded control and human traded
control. And we optimize the design for these two types
of scenarios to meet the application requirements of more
different control subjects.

4) Taking LunarLander as a representative example, we veri-
fied the method proposed in this article and obtained good

Fig. 1. Human–machine traded control framework for SDM.

preliminary experimental results. This has a positive role
in promoting and encouraging more relevant researchers to
continue to explore the solution of human–machine SDM
problems.

The rest of this article is organized as follows. Section II
introduces problem statement and related work, background
knowledge, respectively. Section III describes the proposed
framework and main methods in detail and the experimental
results are shown in Section IV. Finally, Section V concludes
this article.

II. PROBLEM STATEMENT AND RELATED WORK

Our work takes MDP (see [24], [25]) as the theoretical
background to study the application of human–machine traded
control systems in the field of sequential decision-making.

A. Problem Statement

The fact that human–machine performance is better than
purely human performance should come as no surprise for
the situations, where machines outperform humans are usually
standard, routined, automated, repeated, noncreative. Addition-
ally, humans’ inherent cognitive advantages enable them to
make instructive decision-making behaviors until the machine
agent learns a good strategy. When the environment is sud-
denly changed or is subject to huge disturbances, the machine
agent may not be able to meet the decision-making needs
in a timely manner, e.g., fierce military human-UAV combat.
Therefore, considering the respective advantages of humans
and machines, human intelligence cannot be ignored before
the machine achieves complete intelligent autonomy in various
fields. The question then naturally arise for us to integrate human
and machine intelligence, for better, augmented intelligence, as
have been investigated very briefly in our present work.

As mentioned in Section I, we try to obtain the solution of
sequential decision-making through traded control of HOTL,
as shown in Fig. 1. Fig. 1 shows the general framework of the
human–machine traded control systems (including the above
two situations: machine traded control, human traded control).
To avoid redundancy, we put human traded control in paren-
theses and describe it at the same time. For machine traded
control (human traded control), human (machine) plays the role

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 09,2022 at 02:32:35 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: TRADED CONTROL OF HUMAN–MACHINE SYSTEMS FOR SEQUENTIAL DECISION-MAKING BASED 555

of regular decision-makers. The machine agent (human) is not
so much in the control loop as it is on the control loop. Therefore,
the machine (human) plays the role of supervisor or substitute.
When a serious error occurs in the decision-making behavior
of the human (machine), the machine (human) can forcefully
intervene in the decision-making until the human (machine)
resumes normal decision-making ability.

Regardless of the above two situations, how to trigger the oc-
currence of trade and the degree of triggering are both important
and difficult. Facing SDM, we discuss the autonomous boundary
problem, decision uncertainty, and reasonable arbitration mech-
anism in the human–machine traded control systems based on
reinforcement learning to achieve the improvement of decision-
making performance. But in order to describe these problems
uniformly, we do not emphasize the direction of trade here for
the time being. Human intelligence and machine intelligence
are combined in an “traded control” way to improve decision-
making performance. We describe an optimization model as
follows:

max
at∈A

J(s(t), a(t)) = Q(s(t), a(t)) (1a)

s.t. a(t) = fa(s(t), am(t), ah(t), b(t)) (1b)

am(t) = pm(s(t)) (1c)

ah(t) = Human − Action (1d)

s(t+ 1) = fd(s(t), a(t)) (1e)

C(s(t), am(t), ah(t)) ≤ 0

t = 0, 1, 2, 3, . . . (1f)

where fa(·) determines which decision-maker corresponds to
the current state of the environment. am(t), ah(t) represent
the action of machine and human, respectively. a(t) describes
the result of the arbiter and also represents the action that
the system should take at time t. b(t) is autonomous bound-
ary. Q(s(t), a(t)) is the value function of the state-action pair
(s(t), a(t)). s(t), s(t+ 1) describes the state at time t and t+ 1,
respectively. fd(·) represents the state transition model. C(·)
constrains states and actions.

In this article, we combine machine intelligence and human
intelligence to achieve improvements to fully autonomous ma-
chine algorithms. How to establish a unified human–machine
traded control systems framework, which can affect the next
time step state information through a higher-quality decision
method under the given environmental state observation (such
as position information and attitude information), is our concern.
We will introduce the specific methods in detail in Section III.

B. Related Work

1) Human–Machine Traded Control: Traded control is based
on a certain evaluation mechanism or task objective, and the
strong decision makers’ compulsory control over the weak deci-
sion makers. This article mainly focuses on the human–machine
traded control systems. This method provides an alternative to
fully automated robotic systems that can be used to expand the
effectiveness of modern robots in more user-friendly areas, such

as assisted driving, autonomous weapon systems, and intelligent
learning assistance systems.

In traded control, the machine or human agent has exclusive
control of a system at any point in time. Mixed-initiative trades in
control can be proposed by either the machine or human based
on agent-specific models of failure probability. Disagreement
stems from differences in the agents’ models of failure, and
occurs when the agents do not agree to a proposed trade [21].
According to [22], in traded control the operator and the robot
both controlled the robot’s actions. The operator initiated a task
or behavior for the robot. The robot then performed the task
autonomously by following the desired input while the operator
monitors the robot. Muir [23] developed a model of human
trust in machines, taking models of trust between people as a
starting point, and extending them to the human–machine rela-
tionship, so as to assist in the completion of human intervention
in automated systems. Lex [26] proposed an arguing machine
framework based on the idea of integration that the primary and
secondary system solve the same control task at the same time.
When the two subsystems make relatively different decisions,
humans acting as supervisors unilaterally intervene in intelligent
machines. In contrast, the literature [27] relied on data-driven,
joint human–machine systems to model-based representations to
evaluate a large number of potential inputs that users may wish
to provide in parallel. This way enabled users to do whatever
they want (maximum permissions assigned to human partners)
in situations where it is difficult to obtain or without user goals
and improves systems’ security.

2) Arbitration: Arbitration is necessary for switching or
mixing between human and intelligent machines. Arbitration
refers to a fusion policy. A common form of fusion in human–
machine shared control systems is through a linear combination
between the user and autoagent policies. The arbitration param-
eter may depend on different factors, such as the confidence
in the user’s intention prediction, or the difference between
each command [6], [28], [29]. The literature [30] evaluated
the confidence of the DQN through the network loss function
and assessed the degree of agreement between human action
recommendations and the actions selected by the DQN. Then,
the arbitrator will choose actions between random exploration,
the action chosen by the DQN, and human action suggestions
(if any). Learning arbitration policies from user interaction was
described (this is done by calculating the best fusion parameters
afterward, and supervised learning to train the recurrent neural
network (RNN) to predict the best arbitration) [28].

3) Reinforcement Learning: Reinforcement learning, as an
effective method to realize human–machine traded control, has
been used in a large number of studies in recent years. [31]
proposed a human–machine framework based on model-free
reinforcement learning, which took observations of the envi-
ronment and user’s control or inferred targets (if available) as
inputs, and produced high-value actions or control outputs as
close as possible to user control. [30] modeled the confidence
and consistency of human feedback by extending deep rein-
forcement learning, thereby using discrete human feedback to
enhance the performance of deep learning agents in a virtual
3-D environment (Minecraft). [32] introduced a robot setup that
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enables human–robot teams to not only solve collaborative tasks
within 30 min in real-world training, but also has the same capa-
bilities as human teams performance. The sampling efficiency
of the latest DRL method enables human-in-loop training from
scratch, which opens the door for further research on collab-
orative learning. The author proposed a new human–machine
collaborative reinforcement learning algorithm CQ(λ), which
can converge faster than the traditional Q(λ) reinforcement
learning algorithm. The algorithm CQ(λ) provided the robot
with self awareness to adaptively switch its collaboration level
from autonomy to semiautonomy.

4) Bayesian Neural Network: Thanks to earlier work [33]–
[36], the application of BNN was gradually becoming a real-
ity [12], [37]. What it means by its name was a technique involv-
ing Bayesian inference and neural networks. BNN is different
from general neural networks in that their weight parameters
are random variables with a probability distribution, not definite
values. And BNN combines probabilistic modeling with neural
networks and gives confidence in the prediction results. A priori
is used to describe key parameters and is used as input to
the neural network. The output of a neural network is used to
describe the likelihood of a particular probability distribution.
Finally, the posterior distribution is calculated by sampling or
variational inference. The BNN is modeled as follows.

Given a dataset D = {X,Y }, training a BNN with the pa-
rameter θ, we can get the posterior distribution of p(θ|D) and
the space of functions fθ theoretically. Furthermore, for the new
input x′, y′ obeys the distribution

p(y′|x,′ D) =

∫
p(y′|x,′ θ)p(θ|D)dθ (2)

where

p(θ|D) =
p(θ)p(D|θ)

p(D)
(3)

with p(θ|D) posterior distribution, p(D|θ) likelihood function,
p(D) marginal likelihood. Since θ is a random variable, our
predicted value is also a random variable. It can be seen from
formula (2) that the core of probabilistic modeling and prediction
of data with BNN is to make an efficient approximate posterior
inference, and variational inference is a very suitable method.
As in the literature [13], we implement approximate inference
of BNN based on dropout NN.

III. METHODOLOGY

For human–machine traded control, how to trigger the occur-
rence of trade is difficult points that need to be solved urgently.

1) The machine traded control means that the control process
of the controlled object is originally controlled by humans.
When human decision-making errors or extremely uncer-
tain cognition occur, the machines take the initiative to
take over the control process of the controlled object.

2) Human traded control means that the control process of
the controlled object is originally controlled by machines.
When the quality of the machines’ decisions are extremely
poor or the credibility is low, the human partners take the

initiative to take over the control process of the controlled
object.

Obviously, it is necessary to judge the decisions of humans
and machines, and it is a process of trade from those with
high decision-making quality to those with low decision-making
quality. In the above two cases, since trade and handover are
required in real time, it is particularly important to judge when to
trigger the trade and switching. And since humans and machines
belong to two control systems with different attributes after all,
whether frequent trade will cause the instability of the control
process of the controlled object also needs to be considered.
Therefore, this article considers how to improve the control per-
formance of the controlled object under traded control, through
the effective decision-making behavior generated by modules
such as the learned decision network, decision-making quality
evaluation method, and fair and reasonable switching mecha-
nism based on the perceived environmental state information.

A. Autonomous Boundary of Human–Machine Traded Control

In traded control, when human intelligence and machine
intelligence appear at the decision-making level at the same time,
developers inevitably have to divide the decision-making au-
thority between humans and machines. Of course, from another
perspective, if there is a scope of decision-making authority,
there are constraints on decision-making behavior. And we
believe that the human behavior space and the machine behavior
space constituted by decision-making behaviors that meet this
constraint are beneficial to the optimized solution of the con-
trolled object. In this section, we hope to make up for the vacancy
of the human–machine traded control systems on this point,
using information such as the perceived environmental state and
the learned decision-making network to carry out mathemati-
cal formal expressions and algorithms for the human–machine
decision-making authority in the human–machine traded control
systems. Before introducing the autonomous boundaries, we
first give a definition of autonomy.

Definition III.1 (Autonomous boundary of human): The au-
tonomous boundary of human refers to the range of human
intelligence to make decisions and actions in accordance with
the direction that is beneficial to the joint optimization of the
human–machine traded control systems.

In general, the autonomous boundary is composed of its
lower and upper bounds. However, the lower bound of human
autonomy involves the cognitive defects of human beings and is
beyond our consideration. Therefore, the question of the upper
bound of human autonomy is considered in this article.

In the strategic design of the machine traded control systems,
the autonomous boundary of human is an important concept,
which relates to when and how the machine intervenes in the
human control. When this boundary is not exceeded, the system
satisfies the human control decision-making vision. When this
boundary is exceeded, the system allows machine trade to occur.
With the progress of the dynamic decision-making process, the
boundary of human autonomy can be optimized in real time,
and the optimized boundary can be used as the next decision
condition again. Therefore, we consider defining the boundary
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problem of human autonomy as the following optimization
problem:

bh(t) = arg max
ah∈Ah(t)

Jb
h,m(s(t), ah) (4a)

s. t. C(s(t), ah) < 0 (4b)

where

Ah(t) := {ah(t), t ≥ 0}. (4c)

Among them, Jb
h,m(s(t), ah(t)) is the common objective

function of humans and machines. The objective function can
be defined as different expressions according to specific imple-
mentation scenarios and algorithms, such as cumulative rewards
(cost) function

Jb
h,m(s(t), ah(t)) =

∫ t+T

t

[r(s(t), ah(t))− c(s(t), ah(t))]dt.

(5)

Definition III.2 (Autonomous boundary of machine): The au-
tonomous boundary of the machine refers to the boundary of the
AI-driven machine intelligence to make decisions and actions
in the direction that is beneficial to the joint optimization of the
human–machine traded control systems.

Similarly, the lower bound of machine autonomy involves the
level of mechanical, physical and mechanical automation, and is
not at the level of intelligent decision-making that we consider.
Therefore, this article considers the upper bound of machine
autonomy.

In the strategic design process of human traded control sys-
tems, the autonomous boundary of the machine is an important
concept, which relates to when and how the human partner
intervenes in the machine control. When this boundary is not
exceeded, the demand for autonomous control and decision-
making of the machine is met, and when this boundary is
exceeded, human partner trade occurs. With the progress of the
decision-making process, the autonomous boundary of the ma-
chine can be optimized in real time, and the optimized boundary
can be used as a judgment condition in the future. Therefore,
similarly, we consider defining the autonomous boundary prob-
lem of the machine as an optimization problem

bm(t) = arg max
am∈Am(t)

Jb
h,m(s(t), am) (6a)

s. t. C(s(t), am) < 0 (6b)

where

Am(t) := {am(t), t ≥ 0}. (6c)

Among them, Jb
h,m(s(t), am(t)) is the common objec-

tive function of humans and machines. The definition of
Jb
h,m(s(t), am(t)) is similar to (5).
Considering the optimization problem of the above (4) and

(6), we can describe the general algorithm idea as shown in
Algorithm 1. First, we initialize the upper bound of human (ma-
chine) autonomy, for instance, in a manner similar to the random
initialization of parameters in a neural network. In the process of
dynamic evolution, the real-time decision-making behavior of
humans (machine intelligence) is filtered based on constraints.

Algorithm 1: Algorithm Design of Autonomous Boundary.
1: Initialization: Autonomous boundary of human

B̄h = {bh(0)}(machine B̄m = {bm(0)}).
2: Output: Autonomous boundary of human

B̄h = {bh(t)} (machine B̄m = {bm(t)}).
3: repeat
4: Input: The system state s(t), human behavior

ah(t) (machine behavior am(t)).
5: Filter the human behavior ah(t) (machine behavior

am(t)) at time t according to the constraints (4b) (or
(6b)) in the optimization (4) (or optimization (6)).

6: Compare the objective function (4a) ((6a))
corresponding to human behavior ah(t) (machine
behavior am(t)) with the boundary information
bh(t− 1) (or bm(t− 1)). If
Jb
h,m(s(t), ah(t)) > Jb

h,m(s(t), bh(t− 1)) (or
Jb
h,m(s(t), am(t)) > Jb

h,m(s(t), bm(t− 1))), the
upper bound of human autonomy bh(t) (or the upper
bound of machine autonomy bm(t)) is calculated
according to the optimized expression (4)(or according
to the optimized expression (6)).

7: until End of training.

After that, by comparing the real-time human decision-making
action (machine decision) at time t with the upper bound of
human autonomy bh(t− 1) (or the upper bound of machine
autonomy bm(t− 1)) at the previous moment t− 1, based on
optimization (4) [or (6)], the autonomy boundary of human bh(t)
[the upper bound of machine autonomy bm(t)] at the current
moment is updated. Taking maximizing the objective function
as an example, the behavior corresponding to the maximum
objective function within the constraint range is the information
of boundary we want to search. So far, we have given a general
method to determine the autonomous boundary of humans and
machines.

B. Optimal Design of Human–Machine Traded Control

Traded control means that the status of decision makers
in the human–machine systems is asymmetrical. Either it is
the human–machine master–slave relationship that meets the
needs of human experiences, or the machine–human master–
slave relationship that emerges by using the machine’s high-
precision capabilities. This section considers the optimization
of the design of the human–machine traded control systems
based on the above discussion of the autonomous boundary (see
Section III-A). Considering that the machine can intervene in
human control in one direction is a realistic requirement, which
means that the machine has a higher priority decision-making
authority. In this case, allowing the mandatory trade of machine
intelligence, or even temporarily depriving human autonomy,
has become a feasible human–machine collaboration strategy. In
the human traded control systems, humans have higher priority
decision-making authority. In other words, when the machine
controls the operation of the controlled object, if human find
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Fig. 2. Detailed diagram of the overall framework of human–machine traded
control for SDM.

anything wrong, they can intervene at any time, and it has be-
come a human–machine collaboration systems that already exist
in reality. We describe the above-mentioned human–machine
traded control systems, as shown in Fig. 2.

Fig. 2 has two decision-making subjects, namely machine
intelligence and human intelligence. Machine intelligence in-
cludes strategy network, credibility evaluation module, and au-
tonomous boundary learning network. Similarly, human intel-
ligence includes decision-making users, credibility evaluation
modules, and autonomous boundary learning networks. For the
system state s(t) at any time t, machines and humans will
output their respective decision actions (am(t), ah(t)), decision
credibility (cm(t), ch(t)), and the current decision boundary
(bm(t− 1), bh(t− 1)). The arbitration module decides whether
to intervene based on the above six input signals, thereby out-
putting the final decision signal. Based on the exploration of the
method for determining the autonomous boundary of human B̄h

(the autonomous boundary of machine B̄m) in the previous sub-
section (see Section III-A), we formalized the overall systems
of the traded control into the following optimization problem:

max
a(t)∈A

Jh,m(s(t), a(t))=

∫ t+T

t

[r(s(t), a(t))− c(s(t), a(t))]dt

(7a)

max
â(t)∈Â

Jb
h,m(s(t), â(t)) = Jh,m(s(t), â(t)) (7b)

s. t. ṡ(t) = fd(s(t), a(t)) (7c)

a(t) = fa(ah(t), am(t), b(t− 1))
(7d)

â(t) = {ah(t)|am(t)} (7e)

ah(t) = Human−Action (7f)

am(t) = pm(s(t)) (7g)

C(s(t), ah(t), am(t)) < 0

t = 0, 1, 2, 3, . . .. (7h)

Algorithm 2: Machine Traded Human Control (MTHA).
1: Initialization: Randomly initialize the intelligent

machine decision network pm and its parameters.
2: Input: The system state s(t).
3: Output: The final decision behavior a(t).
4: repeat
5: The intelligent machine decision network calculate

machine behavior am(t) according to pm(·), and its
credibility cm(t) based on Monte Carlo estimation
(12).

6: Input human behavior ah(t) at time t through
peripherals (such as mouse, keyboard, joystick, etc.),
and calculate its credibility cm(t) based on Monte
Carlo estimation (13).

7: Obtain the final decision behavior a(t) at time t
based on the arbitration formula (8).

8: until Reaching maximum training time step N .

Among them, Jb
h,m(s(t), â(t)) is the optimization objective

function of the autonomous boundary. Here, we can choose it as
the optimized objective function Jh,m(s(t), a(t)) of the con-
trolled object. â(t) = {ah(t)|am(t)} ∈ Â, Â = {Ah|Am} ⊆
A,A = {Ah,Am}. It is worth noting that when â(t) = ah(t),
the formula (7b) represents the autonomous boundary of hu-
man is optimized, and when â(t) = am(t), the formula (7b)
represents the autonomous boundary of machine is optimized.
r(·) and c(·), respectively, represent the instant reward and
cost at time t. fd(·) represents dynamic model of system.
fa(ah(t), am(t), b(t− 1)) is the arbiter of human behavior and
machine behavior, where b(t) = {bh(t− 1), bm(t− 1)} can be
solved by the formulas (4),(6) and algorithms 1 in the previous
section. The difference of the arbitration function fa(·)will lead
to different traded control, which will be introduced in detail as
follows:

a(t)=

⎧⎪⎨
⎪⎩

Machine: am(t), {cm(t) ≥ ch(t)} & {Jh,m(s(t)

am(t)) ≥ Jh,m(s(t), ah(t))}
Human: ah(t), otherwise.

(8)

Before describing the optimal design of human–machine
traded control based on the autonomous boundary, we first give
the human–machine traded control design algorithm, including
machine traded human algorithm (MTHA) and human traded
machine algorithm (HTMA). In the algorithm 2 (MTHA), for
the system state s(t) in the dynamic evolution process, the
arbitration function (8) is used to judge the trigger timing of
machine traded human control in real time. Similarly, the algo-
rithm HTMA can determine the trigger timing of human traded
machine based on the arbitration function (9). The difference
between HTMA and MTHA is that formula (8) in the algorithm
2 is replaced by the following:

a(t) =

⎧⎪⎨
⎪⎩

Human: ah(t), {ch(t) ≥ cm(t)} & {Jh,m(s(t)

ah(t)) ≥ Jh,m(s(t), am(t))}
Human: am(t), otherwise.

(9)
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Next, we give an optimization algorithm for traded con-
trol based on the autonomous boundary, including the
machine traded human control algorithm based on the au-
tonomous boundary (MTHA-B) and the human traded machine
based on the autonomous boundary (HTMA-B). Equations (10)
and (11) shown at bottom of the page, represent the arbitration
function of MTHA-B and HTMA-B, respectively. In machine
traded human control, if machine behavior is better than human
behavior (including autonomous boundary of human and human
real-time input), and the credibility of machine decision-making
is greater than human control, then machine’s trade triggers
success. When the autonomous boundary of human is superior to
machine behavior and human real-time input, and the credibility
of human decision-making is greater than that of the machine,
then the machine’s trade is not triggered, but at this time the op-
timal decision-making behavior is obtained on the autonomous
boundary of human. The rest of the cases in machine traded
human control indicate that the machine failed to intervene, and
the human behavior at this time is the optimal behavior.

In human traded machine control, if human behavior is better
than machine behavior (including autonomous boundary of ma-
chine and machine real-time input), and human decision-making
credibility is greater than machine, then human trade can trigger
success. When the autonomous boundary machine is superior
to human behavior and machine input, and the decision-making
credibility of the machine is greater than that of humans, then hu-
man trade is not triggered, but at this time the optimal decision-
making behavior is obtained on the autonomous boundary of
machine. The rest of the cases in human traded machine control
indicate that humans have failed to intervene, and the behavior
of the machine at this time is the optimal behavior.

In addition, cm(t) and ch(t) in (10) and (11) represent the
credibility assessment of machine behavior am(t) and human
behavior ah(t), respectively. Considering the probabilistic char-
acteristics of the BNN, the arbiter uses the MC dropout [13]

method to measure the credibility of the subsystems decision.
cm(t) and ch(t) can be calculated as follows:

E[am(t)] ≈ 1

T

T∑
i=1

pim(s(t)) (12a)

E[(am(t))T (am(t))] ≈ τ−1I +
1

T

T∑
i=1

pim(s(t))T pim(s(t))

(12b)

cm(t) = E[(am(t))T (am(t))]− E[(am(t))]TE[am(t)] (12c)

E[ah(t)] ≈ 1

T

T∑
i=1

aih(t) (13a)

E[(ah(t))
T (ah(t))] ≈ τ−1I +

1

T

T∑
i=1

aih(t)
T
aih(t) (13b)

ch(t) = E[(ah(t))
T (ah(t))]− E[(ah(t))]

TE[ah(t)] (13c)

where pim(s(t)) is the output of the ith sample of the strategy
model at time t with system state s(t), and aih(t) is the output of
the ith sample of the historical data of human decision-making
at time t.

Finally, we give the optimization algorithm of human–
machine traded control, including MTHA-B and HTMA-B. In
this article, on the basis of solving the problem of ordinary
human–machine traded control for SDM (1), it incorporates
the concept of autonomous boundary (which may be human
boundary or machine boundary). The optimization goal of the
algorithm is not only to optimize the strategy function directly
related to the decision-making behavior, but also to learn to
optimize the autonomous boundary that indirectly affects the
decision-making behavior. First, we initialize the correspond-
ing autonomous boundary information, policy network and its
parameters. During the dynamic evolution of the system, hu-
man partners and intelligent machines will, respectively, give

a(t) = fa(ah(t), am(t), bh(t))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Machine: am(t), {cm(t) ≥ ch(t)} & {Jh,m(s(t), am(t)) ≥ max{Jh,m(s(t), ah(t)), Jh,m(s(t), bh(t− 1))}}

Boundary: bh(t− 1), {ch(t) ≥ cm(t)} & {Jh,m(s(t), bh(t− 1)) ≥ max{Jh,m(s(t), ah(t)), Jh,m(s(t), am(t))}}

Human: ah(t), otherwise
(10)

a(t) = fa(ah(t), am(t), bm(t))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Human: ah(t), {ch(t) ≥ cm(t)} & {Jh,m(s(t), ah(t)) ≥ max{Jh,m(s(t), am(t)), Jh,m(s(t), bm(t− 1))}}

Boundary: bm(t− 1), {cm(t) ≥ ch(t)} & {Jh,m(s(t), bm(t− 1)) ≥ max{Jh,m(s(t), ah(t)), Jh,m(s(t), am(t))}}

Machine: am(t), otherwise
(11)
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Algorithm 3: Machine Traded Human Control Based on
Autonomous Boundary (MTHA-B).

1: Initialization: Randomly initialize the intelligent
machine decision network pm and its parameters;
Initialize the autonomous boundary of human B̄h.

2: Input: The system state s(t).
3: Output: The final decision behavior a(t).
4: repeat
5: The intelligent machine decision network calculate

machine behavior am(t) according to pm(·), and its
credibility cm(t) based on Monte Carlo estimation
(12).

6: Input human behavior ah(t) at time t through
peripherals (such as mouse, keyboard, joystick, etc.),
and calculate its credibility cm(t) based on Monte
Carlo estimation (13).

7: Obtain the final decision behavior a(t) at time t
based on the arbitration formula (10).

8: According to algorithm 1, update the autonomous
boundary information bh(t) at time t.

9: until Reaching maximum training time step N .

decision-making behaviors ah(t) and am(t) for real-time state
s(t), and the corresponding decision-making credibility eval-
uation ch(t) and cm(t). Considering the common objective
function of machine traded control, based on the learning method
of the autonomous boundary in (4) and algorithm 1, the final
decision-making behaviora(t) is calculated according to arbitra-
tion (10). The HTMA-B algorithm can be obtained similarly. The
difference from MTHA-B is that B̄h in step 1 of the algorithm
3 needs to be replaced with B̄m, and the arbitration function in
step 7 needs to be replaced with (11). Finally, the autonomous
boundary update at the current time t is completed. Repeat until
the end of the training.

IV. EXPERIMENTS

In this section, two experiments will be conducted to verify the
optimization methods proposed in this article, namely, machine
traded control, human traded control.

A. Machine Traded Control

Aiming at the problem of machine traded control, this subsec-
tion conducts simulation experiments on the basis of reinforce-
ment learning. Specifically, we use the LunarLander in OpenAI
Gym, as shown in Fig. 3. During the descent of the lander, if the
lander crashes or comes to a standstill, a complete experience
ends, and a reward of −100 or 100 is awarded. Each leg of the
lander touches the ground with a reward of 10. When the main
engine is turned ON, it consumes fuel with a reward of −0.3 per
frame (assuming that the fuel is unlimited). The state vector of
lander s(t) includes: coordinates (x(t), y(t)), speed (ẋ(t), ẏ(t)),
angle (θ(t), θ̇(t)), whether to land (legl(t), legr(t)), and landing
point coordinates h(t).

Fig. 3. Simulation environment of the LunarLander.

Fig. 4. Mean reward comparison of algorithms HOA, MTHA, and MTHA-B
for 500 episodes.

This experiment uses the DQN algorithm as the machine agent
algorithm. We conduct comparative experiments on human in-
dividual control and machine traded control, including rewards
comparison, success rates comparison, crash rates comparison,
percentage of human–machine actions, action correspondence
of human–machine, and trajectories comparison. And before
the start of the formal comparison experiment, we first pretrain
the machine agent algorithm DQN so that the machine agent
involved in human control has a certain reasonable decision-
making ability. In the figures shown below, we use human-only-
algorithm (HOA) to indicate that only human operators will
control. In this article, MTHA refers to the intervention of DQN
machine agent strategy on human operations, which corresponds
to the MTHA in Section III-B. MTHA-B represents the opti-
mization algorithm that adds boundary information on the basis
of MTHA, which corresponds to the MTHA-B in Section III-B.
In more detail, we define and judge the autonomous boundary
of human, and apply this boundary information to the control
optimization algorithm of machine intervene human, so as to
achieve the goal of improving decision-making performance.

As shown in Figs. 4 and 5(a), the algorithm HOA has the
worst reward, which is in line with our conjecture that the
accuracy of human control is not high. In contrast, machine
traded control algorithms (MTHA and MTHA-B) can increase
cumulative rewards to varying degrees. And in the machine
traded control algorithm, MTHA-B has a better effect due to
the use of additional boundary information. The accumulative
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Fig. 5. Comparison of algorithm HOA, MTHA, and MTHA-B. (a) Rewards: The solid line in the figure indicates the mean value of the reward, the red plus sign
indicates abnormal points, and the shadow indicates the box area where most points fall. (b) Rewards of success episode. (c) Success rates: the solid line in the
figure represents the mean value of the success rates, and the shade represents uncertainty. (d) Crash rates: The solid line in the figure represents the mean value of
the crash rates, and the shade represents uncertainty.

Fig. 6. Percentage of human actions ah and and machine actions am. (a) MTHA. (b) MTHA-B.

Fig. 7. Trajectories comparison of algorithm. (a) HOA. (b) MTHA. (c)
MTHA-B.

Fig. 8. Timesteps in each episode of the algorithm HOA, MTHA, and
MTHA-B.

rewards here refer to the accumulative reward value obtained by
each complete episode. In order to avoid the contingency of the
experimental effects, we randomly collected 500 experimental
results to evaluate the mean and uncertainty. In order to prove
the superiority of the algorithm MTHA-B, we averaged the
experience rewards of successful landing in 500 episodes, and
obtained Fig. 5(b). Combining Fig. 5(a) and (b), we observe
that the algorithm MTHA-B not only has an advantage in the
rewards of the overall episodes but also makes the successful
landing episodes have higher rewards than HOA and MTHA.
Therefore, the experimental results in this section are convincing
and effective to prove the optimal design of machine traded
control.

In the LunarLander, landing on the landing site smoothly and
safely is the decisive factor for the success of the game. Next,
we compare the landing success rates and crash rates of the
algorithm HOA, MTHA, and MTHA-B. For the success rates
in Fig. 5(c), MIHA-B > MIHA>HOA. The success rates of
the algorithm HOA are continuously low, which stems from
humans’ low-precision operations for not good at work, as well
as the weakness of the required learning time and response
ability. With the trade of the machine, the success rates have
been significantly improved. In particular, in the landing success
rates, with the increase of episodes, the algorithm MTHA-B
can continuously increase the success rates to 0.55 or even
higher. Similarly, for the crash rates shown by Fig. 5(d), the
sharply reduced crash rates are due to the machine agents that
make decision-making more precise and robust. However, we
found that the crash rates of MTHA-B are higher than that of
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Fig. 9. Actions correspondence of algorithm. (a) MTHA: the action correspondence of the first 100 time steps; from top to bottom, there are final actions, machine
actions, and human actions. (b) MTHA-B: the action correspondence of the first 100 time steps; from top to bottom, there are final actions, machine actions, human
actions, and boundaries of human.

Fig. 10. Mean reward comparison of algorithms MOA, HTMA, and HTMA-B
for 500 episodes.

MTHA, which seems to be a bad-looking signal. In fact, this
is also related to our use of autonomous boundary information.
It is a clear to measure the timing of trade through boundary
information, but some of the instability caused by boundary
introduction cannot be ignored. This requires developers to make
a compromise between success rates and moderate instability.

From above Fig. 5, we observe that with the continuous
improvement of machine decision-making capabilities, humans
can gradually hand over tasks that they are not good at to
intelligent machines to complete, or part of them to complete,
as in the topic of this section, i.e., the machine intervenes in
human control. This can also be derived from the behavior
percentages in Fig. 6. It can be seen from the figure that the
proportion of human actions in MTHA is relatively low. In
MTHA-B, the final decision-making action is a combination of

human actions, machine actions, and human boundaries. More
specifically, Fig. 6(b) is the percentage of times each of the three
components actions (the red human behavior, the yellow human
autonomous boundaries, and the blue machine decision-making
behavior) were chosen by the arbitrator (10) in episodes. From
Fig. 6(b), it can be found that human actions, human boundaries,
and machine actions affect the final decision-making behavior
in a ratio of 2 : 3 : 5. This is understandable and in line with
our definition of the boundary because it is possible to achieve
the best on the boundary. In this section, we mainly consider
the upper bound of human autonomy, which means that no
machine intervention is required when the credibility of human
decision-making behavior is high. At this time, we only need
to make a selection on the boundary between human real-time
decision input and autonomous boundary of human.

Next, we compare the landing trajectories of HOA, MTHA,
and MTHA-B algorithms, as shown in Fig. 7. First of all, the
landing trajectory of HOA looks clean and neat, but combined
with its low success rates and high crash rates (as shown in
Fig. 11) and timesteps (see Fig. 8), we can conclude that HOA
tends to crash directly and rapid failure caused by the impre-
cision of human operations. Second, we found the landing tra-
jectories of MTHA algorithm more messy but the success rates
have been improved, which is due to the machine traded control.
The messiness of trajectories of MTHA-B algorithm is between
that of HOA and MTHA, and the success rates and running time
steps of MTHA-B are greatly improved, which is more in line
with the algorithm goal (to complete the task better and faster).
About better and faster, it is also reflected in the running time
step of the algorithms. The algorithm MTHA has the longest
running time step, which is related to the larger proportion of
machine actions [see Fig. 6(a)]. That is, the machine trades a
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Fig. 11. Comparison of algorithm MOA, HTMA, and HTMA-B. (a) Rewards: The solid line in the figure indicates the mean value of the reward, the red plus
sign indicates abnormal points, and the shadow indicates the box area where most points fall. (b) Rewards of success episodes. (c) Success rates: the solid line in
the figure represents the mean value of the success rates, and the shade represents uncertainty. (d) Crash rates: The solid line in the figure represents the mean value
of the crash rates, and the shade represents uncertainty.

Fig. 12. Percentage of human actions ah and and machine actions am. (a) HTMA. (b) HTMA-B.

Fig. 13. Trajectories comparison of algorithms: (a) MOA; (b) HTMA; (c)
HTMA-B.

Fig. 14. Timesteps in each episode of the algorithms MOA, HTMA, and
HTMA-B.

slower learning rate for a partial increase in the success rates.
The running time of the algorithm MTHA-B is between the
three algorithm. In other words, MTHA-B not only improves
the success rates, reduces the crash rates, but also speeds up the
task completion speed.

Finally, in order to facilitate the understanding of the execu-
tion process of the machine traded control in the human control
systems mentioned in this subsection, we give the final decision-
making behavior a(t), the machine decision-making behavior
am(t), and the corresponding relationship between the human
decision-making behavior ah(t), as shown in Fig. 9. From
Fig. 9(a), we observe that the value of the final decision-making
behavior a(t) is always between the machine decision-making
behavior am(t) and the human decision-making behavior ah(t).
From Fig. 9(b), the final action a(t) is to choose between
am(t), ah(t), and bh(t− 1), where bh(t− 1) is the boundary
information of human, and we add additional decision boundary
information to optimize and judge the final decision signal.

B. Human Traded Control

In this section, LunarLander is still used, and DQN is used
as the machine agent algorithm. But we put more emphasis on
human traded control in this section. We conduct comparative
experiments between the machines’ independent control and hu-
man traded control, including reward comparison, success rates
comparison, crash rates comparison, percentages of human–
machine actions, actions correspondence of human–machine,
and landing trajectories comparison. Similarly, before the formal
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Fig. 15. Actions correspondence of algorithm. (a) HTMA: the action correspondence of the first 100 time steps; from top to bottom, there are final actions,
machine actions, and human actions. (b) HTMA-B: the action correspondence of the first 100 time steps; from top to bottom, there are final actions, machine
actions, human actions, and boundaries of machine.

comparative experiment, we first pretrain the machine agent
algorithm DQN. In the following figures in this section, the use
of machine-only-algorithm (MOA) indicates that only machine
control is used. MTHA refers to the intervention of human
operations on DQN machine agent strategy, which corresponds
to the HTMA in Section III-B. HTMA-B represents the opti-
mization algorithm that adds boundary information on the basis
of HTMA, which corresponds to the HTMA-B in Section III-B.
In more detail, we define and judge the autonomous boundary
of machine, and apply this boundary information to the control
optimization algorithm of human intervene machine, so as to
achieve the goal of improving decision-making performance.

In Figs. 10 and 11(a), comparing MOA, HTMA, and
HTMA-B, within a certain period of time, the human inter-
vention algorithm (HTMA, HTMA-B) is more rewarding than
the machine-only algorithm MOA. Particularly, the algorithm
HTMA-B has a significant improvement in rewards, which also
confirms the improvement of the decision-making performance
of the autonomous boundary we described. In addition, to be
more specific, we select the successful landing episodes from
500 random episodes, and average their rewards to get Fig. 11(b).
In Fig. 11(b), we observe that the rewards corresponding to suc-
cessful landing episodes confirm to the relationship of HTMA-B
> HTMA>MOA. Therefore, we can conclude that the method
proposed in this article (HTMA-B) has greater advantages com-
pared to the previous machine autonomy (MOA) and human
trade machine control (HTMA).

In the LunarLander, landing on the landing site smoothly
and safely is the decisive factor for the success of the game.
Next, we compare the landing success rates and crash rates of
the algorithm HOA, MTHA, and MTHA-B. For the success
rates in Fig. 11(c), the success rates of MOA continues to

below, due to the fact that the machine agent is based on neural
network training, which takes a lot of time to train to complete.
With human traded control, the landing success rates have
been improved, especially the method described in this article
HTMA-B can continue to increase the landing success rates to
0.45 or even higher. Regarding the crash rates in Fig. 11(d), our
experimental result is MOA > HTMA-B > HTMA. Similar
to HOA > MTHA-B > MTHA in the previous section, we
attribute this phenomenon to the use of autonomous boundary
information. But it is undeniable that the optimal design based
on autonomous boundary information does have a significant
improvement effect on decision-making performance (such as
reward value, success rates), so researchers need to make a better
tradeoff or compromise. From the above experimental results
on rewards, landing success rates, and crash failure rates, we
can see that machine agents can use some of their autonomy to
reduce human labor. However, the current research stage of the
neural network-based machine agent still needs improvement in
learning ability, so it is necessary to seek a better human traded
control strategy, such as the human traded control design based
on autonomous boundary (HTMA-B) in this section, which is
meaningful and effective.

Fig. 12 describes the action percentage of the algorithms
HTMA, HTMA-B. We observe that in the scenario of human
trade in the machine, human actions have a higher share, which
is directly related to the priority level. Human actions, machine
boundaries, and machine actions in HTMA-B affect the final
decision-making behavior in an ratio of 3 : 1 : 4, respectively.
Compared with 2 : 3 : 5 in MTHA-B [see Fig. 6(b)], the propor-
tion of human actions has increased. This is due to two reasons:
the attributes of the human traded algorithm are determined; the
efficiency of human traded control to train better machine agents
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is improved. In addition, we find that machine actions accounted
for about 50% in both MTHA-B and HTMA-B, which also
aroused our thinking. That is, whether it is human traded control
or machine traded control, in the real-time dynamic evolution
process, the machine is a decision-making subject that cannot
be ignored, which is determined by the inherent attributes of the
example itself that are more suitable for machine manipulation.

Next, we compare the landing trajectories of the algorithms
MOA, HTMA, and HTMA-B, as shown in Fig. 13. We find that
in Fig. 13(a) corresponding to the MOA, the landing trajectory is
not as orderly as in the algorithm HOA diagram 7(a) (indicating
the learning effect of the machine agent), but the success rates
is very low. In Fig. 13(b), the algorithm HTMA has made
preliminary improvements to MOA, including the success rates
and the degree of divergence. Furthermore, in Fig. 13(c), the
algorithm HTMA-B enhances HTMA, which not only improves
the success rates, but also has a more orderly and rapid landing
trajectory. Compared with the machine traded control in Fig. 8,
in the human traded control in Fig. 14, the running time steps
of the algorithms MOA and HTMA are not much different.
However, the running time steps of the algorithm HTMA-B have
been significantly reduced, which corresponds to the increase in
the success rates and the decrease in the crash rates in Fig. 11.
Therefore, HTMA-B has the effect of significantly improving
decision-making performance in terms of running time step.

Finally, in order to facilitate the understanding of the execu-
tion process of the human trade in the machine control systems
mentioned in this section, we give the final decision-making
behavior a(t), the machine decision-making behavior am(t),
and the corresponding relationship between the human decision-
making behavior ah(t), as shown in Fig. 15. From Fig. 15(a),
we observe that the value of the final decision-making behavior
a(t) is always between the machine decision-making behavior
am(t) and the human decision-making behavior ah(t). From
Fig. 15(b), the final action a(t) is to choose between am(t),
ah(t), and bm(t− 1), where bm(t− 1) is the boundary infor-
mation of machine, and we add additional decision boundary
information to optimize and judge the final decision signal.

V. CONCLUSION

This article considered a kind of traded control of human
on the loop to solve the problem of human-machine SDM.
Different from the previous traded control, this article used the
autonomous boundary to optimize the design of the decision-
making systems, as shown in Fig. 2. We first discussed the
autonomous boundary decision method in the human–machine
traded control systems, and then optimized the design decision
system based on this boundary information. There are two
dynamic optimization goals in the decision-making process:
the machine strategy network directly related to the decision-
making behavior; the autonomous boundary information indi-
rectly related to the decision-making behavior. The arbitration
mechanism designed in this article not only evaluated the cred-
ibility of decision-making behavior but also added additional
autonomous boundary information. These have a certain degree
of effect whether they are out of control of machines or humans.
Therefore, the decision-making performance finally presented

could be improved and enhanced. We conducted simulation
experiments on machine traded control and human traded con-
trol, respectively, and the experimental results verified the effec-
tiveness of the methods described in this article (MTHA-B and
HTMA-B).

In future work, we will continue to apply autonomous bound-
ary information to the field of shared control, so that the human–
machine hybrid intelligent control systems have a more complete
solution, and the humans and machines have a relatively clear
decision boundary. In addition, we will consider more complex
situations, such as the case where the machine agent does not
understand the task goal. Then, we need to make intentional rea-
soning by observing human behavior, and combine intentional
reasoning information with autonomous boundary information
to get a better final decision, etc.
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